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Abstract—In this paper, we focus on mobile wireless networks
comprising of a powerful communication center and a multitude
of mobile users. We investigate the propagation of deadline-based
content in the wireless network characterized by heterogeneous
(time-varying and user-dependent) wireless channel conditions,
heterogeneous user mobility, and where communication could
occur in a hybrid format (e.g., directly from the central controller
or by exchange with other mobiles in a peer-to-peer manner).
We show that exploiting double opportunities, i.e., both time-
varying channel conditions and mobility, can result in substantial
performance gains. We develop a class of double opportunistic
multicast schedulers and prove their optimality in terms of
both utility and fairness under heterogeneous channel conditions
and user mobility. Extensive simulation results are provided to
demonstrate that these algorithms can not only substantially
boost the throughput of all users (e.g., by50% to 150%), but
also achieve different consideration of fairness among individual
users and groups of users.

I. I NTRODUCTION

The last few years have witnessed an enormous growth
in the popularity and capabilities of handheld devices such
as smartphones, tablets, and laptops. These devices have in
turn fueled mobile content sharing applications, which are
becoming increasingly popular. However, these devices andthe
traffic that they generate have put a significant strain on many
of today’s cellular networks. For example, in June 2010, AT&T
had to phase out its unlimited data plans for smartphones in
lieu of “metered” data plans with limits on monthly bandwidth.
In the same month, iPhone 4 was launched in the U.S. with
many Wi-Fi only applications (e.g., FaceTime video calling),
that users cannot access over 3G.

In this paper, we focus on wireless networks that comprise
of a powerful Communication Center (CC), e.g., a base station,
and many mobile users with communication and computa-
tion capacity, e.g., pedestrians/soldiers carrying smartphones
or tablets, smart robots/sensors, etc. These networks could
communicate in ahybrid format (e.g., mobiles communicating
directly with the CC or with other mobiles in a peer-to-
peer manner), could haveheterogeneous(time-varying and
user-dependent) wirelesschannel conditions, and heteroge-
neous user mobility. Examples of such networks are cellular
networks, military networks, mobile sensor networks with
CC(s), etc. The ever-growing wireless user density will lead
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to increasing proliferation of these networks, but at the same
time generate bandwidth-intensive traffic, which means that
appropriate resource allocation mechanisms that exploit all
available opportunities, will be critical to the efficient usage
and successful deployment of these systems.

The recent unprecedented increase in the density ofmobile
users gives rise to an abundance of “contact” opportunities,
i.e., opportunities where mobile users are in close enough
proximity of each other to communicate with each other. As
a result, content sharing through such contacts may occur at
a similar time scale as that through a service provider.

Traditionally, downlink scheduling, mobility, and content
distribution have been extensively studied, but oftenin isola-
tion. For example, there have been many studies on the unicast
or multicast scheduling problem in cellular networks (to cite,
but a few, [1], [2], [4], [21], [24], [30]). These works have
not exploited the random mobility of users. Similarly, there
is a rich literature on the design and performance analysis of
forwarding algorithms by exploiting the opportunistic mobility
patterns of mobile users in the system (see [7], [8], [11],
[12], [28], [29], among others). These works in mobile ad-
hoc networks, as well as a number of recent works on
content distribution (e.g. [9], [13], [15], [19]), do not consider
the wireless channel’s inherent variability. In contrast to the
existing literature, in this work we will explicitly consider both
time-varying channel conditions and users’ random mobility.

To fully realize the performance gains in content distribution
by jointly investigating mobility and scheduling, we first
develop a class ofdoubly opportunistic multicastalgorithms
with heterogeneous(time varying and user-dependent) wire-
less channel condition andhomogeneouscontact rates among
mobile users. We then extend our class of doubly opportunis-
tic algorithms to scenarios withheterogeneouscontact rates
among mobile users. We refer to such strategies as being
doubly opportunisticdue to two important factors exploited
in the design: the time-varying wireless channel conditions
and the random contact events among mobile users. These
two interacting factors make our study extremely challenging.

We prove that these algorithms achieve a class of Group
Proportional Fairness (GPF) criteria, which characterizedif-
ferent fairness considerations among individual users’ oruser
groups’ throughput, or equivalently, different intra-group or
inter-group tradeoffs. The GPF principles, to be defined in
Section II, incorporate many well-know fairness principles
such as proportional fairness [17], [18] and max-min fair-
ness [3] as special examples. More importantly, this rich
set of fairness principles provides a powerful measure for



two-layer (user-and-group) views of fairness. In particular,
different fairness considerations among individual users(user
groups) can be achieved by simply adjusting theuser (group)
fairness parameterwe define in the GPF criteria. We conclude
our work with numerical simulation results to confirm that the
proposed algorithms significantly improve system performance
in terms of both throughput and fairness.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a downlink multicast scenario where a single
base station (BS) is broadcasting independent streams of
deadline-constrained content to different groups of mobile
users. Agroup consists of all users who are interested in re-
ceiving thesamecontent. For simplicity, we assume that each
user belongs to a unique group. UsingN to denote the number
of groups, andSn to denote the number of users in group
n, we let un,m (n = 1, · · · , N , m = 1, · · · , Sn) represent
the mth user in groupn. In addition to communicating with
the base station, users in a group can communicate among
themselves, and exchange content whenever they come within
the communication range of each other. Our objective in this
paper is to exploit thedouble opportunitiesprovided by the
time-varying channel conditions and mobility of users in order
to maximize the amount of content received by users while
providing afair distribution of the downlink resources among
users and groups.
A. Channel Dynamics: Due to mobility and small-scale
fading, each user has time-varying channel conditions. We
consider a time-slotted communication system where users’
channel conditions remain the same over one time slot. We
choose our unit of time as the length of a time slot.

Due to practical limitations, we assume that the BS is
capable of broadcasting at a discrete set of rates{Ri}

K
i=1 with

0 < R1 < . . . < RK . Depending on its channel condition,
at time t userun,m can achieve amaximum achievable data
rate of rn,m(t) ∈ {0, R1, . . . , RK}. We assume that at the
start of thetth time slot, the BS knows the channel condition
and hencern,m(t) of each user. We make the following mild
assumption onrn,m(t).

Assumption 1. Each userun,m has stationary and ergodic
channel conditions, in particular, the maximum achievable
data rate vector~r(t) , {rn,m}m=1,··· ,Sn

n=1,··· ,N is stationary and
ergodic. 2

Note that Assumption 1 is quite general, and allows for
both spatial and temporal correlation of~r(t), as well as
heterogeneity among users’ channels (e.g., some users may
always have better channel conditions than others).

At each time slott, the BS chooses (i) a group indexn(t),
and (ii) a transmission raterg

n(t)(t) ∈ {R1, . . . , RK}. If a
groupn is not chosen for transmission at timet we setrgn(t) =
0. We assume that at thetth time slot, if the BS chooses to
broadcast to groupn(t) at raterg

n(t)(t), then all usersun(t),m

that satisfyrn(t),m(t) ≥ rg
n(t)(t) can receive and decode the

data correctly. After a userun,m receives data from the BS,

it can propagate unexpired data to other users in thesame1

group through contact events.
B. Content Lifetime Constraints: We assume that the content
of group n (also calledcontent typen) expires afterLn ∈
(0,∞) units of time. The lifetimeLn of a packet depends
primarily on the content’s degree of tolerance to delay. But
it can also be utilized to achieve different tradeoffs between
throughput and delay, or to control the level of content flooding
in the network. For simplicity, we consider the case where
each content type has the same lifetime, i.e.Ln = L for all
n. However, all results in this paper, can be readily extended
to the case whereLn are different for different content types.
C. Contact Process Dynamics:A contact eventbetween a
pair of users occurs when the two users are close enough
to communicate and exchange content with each other. We
used to represent the communication range of any two users
(e.g., for bluetooth devices,d ≈ 10m). If we let xn,m(t)
denote the location of userun,m at (continuous) timet,
we say that one contact event betweenun1,m1

and un2,m2

occurs during[t0, t1) if ‖xn1,m1
(t−0 ) − xn2,m2

(t−0 )‖ > d,
‖xn1,m1

(t) − xn2,m2
(t)‖ ≤ d for all t ∈ [t0, t1), and

‖xn1,m1
(t1)−xn2,m2

(t1)‖ > d. The number of contact events
between a pair of users that have occurred up to timet is a
counting process called thecontact process. We will refer to
the time between the start of two consecutive contact events
between the same pair of users as theinter-contact time. For a
stationary contact process, the reciprocal of the average inter-
contact time is thecontact rate.

We assume that the length of a contact event’s duration
is negligible compared to the inter-contact time. This is a
reasonable assumption, since the ratio between the average
inter-contact time and the average duration of a contact event is
approximately the ratio between the area of the mobile domain
(the cell) and a single user’s communication area (πd2) [14].
For a cell of radius500m and a peer-to-peer communication
range ofd ≈ 10m, this ratio would be greater than6× 103.

Obtaining complete knowledge of the contact processes can
be extremely difficult, and could consume enormous amounts
of uplink resources. Also, mathematically characterizingthe
network performance is intractable for arbitrary contact pro-
cesses. Thus, we adopt the following assumption for our
analytical characterization, but we will allow more general
models in the simulations.

Assumption 2. The contact process between a pair of users
is a Poisson process. 2

Poisson contact processes have been shown to be a good
approximation [7], [11] under the well-knowni.i.d. mobility
model [20] and Random Waypoint (RWP) mobility model [6].
The RWP model has often been used in protocol design and
performance analysis/comparison in mobile ad-hoc networks.

1Allowing packet forwarding indifferent groups can further speed up the
propagation. However, this raises up additional concerns,e.g., the users’
willingness of forwarding copies not in their interest by expending extra
energy, and is beyond the scope of this paper.



Our final assumption concerns the nature of the peer-to-peer
communication between pairs of users.

Assumption 3. During a contact event, a pair of users in the
same group can exchange all the unexpired content copies,
which are absent from each other’s list. 2

D. Set of Feasible Schedulers:Recall that, at thetth time slot,
a schedulerS chooses a group indexn(t) ∈ {1, · · · , N} and
a transmission raterg

n(t)(t) ∈ {R1, · · · , RK}. Before we can
define the set of feasible schedulers we need to clarify what
we mean by throughput. We define userun,m’s throughput
T S
n,m(t) at time slott under the schedulerS as the running

average of the information received by userun,m until time t
either directly through the BS or through contact with peers.
Since we are considering a time-slotted communication system
and continuous time contact processes, we choose our unit of
time as a slot length. Mathematically,

T S
n,m(t) ,

1

t

t
∑

k=1

rgn(k)
∑

v∈[0,min{L,t−k}]

1ES
n,m,k,k+v

, (1)

whereES
n,m,k,k+v represents the event that at timek+ v, user

un,m receives a copy of the content initially broadcast at time
k under schedulerS. Note that this event covers both the case
of userun,m receiving the content directly from the BS (v = 0)
and the case of userun,m receiving the content from a peer
(0 < v ≤ L). Hence, this event captures the effect of channel
dynamics (i.e.rn,m(t) ≥ rg

n(t)(t) for successful reception
from the BS), content lifetime constraints, and contact process
dynamics (i.e. there is a contact between userun,m and another
a userun,m′ carrying a copy of the content before the content
expires). We assume that at the start of thetth time slot, the
BS knows each user’s throughputT S

n,m(t−1) at timet−1. We
define userun,m’s long-term throughputunder the scheduler
S as

τSn,m , lim
t→∞

T S
n,m(t). (2)

In this work, we consider the set offeasible schedulersS
for which this limit exists. This class covers a large range of
schedulers including the class of stationary schedulers [22].
E. Class of Group Utility Functions: As in any opportunistic
multicast scenario the BS needs to ensure that: (i) the users
get as much of their subscribed content either directly from
the BS or through contact with peers, and (ii) the downlink
resource is shared in a ‘fair’ way. We adopt sets of group
utility functions {Ug

n(·)}n=1,··· ,N and user utility functions
{Uu

n,m(·)}m=1,··· ,Sn

n=1,··· ,N to characterize fairness among groups
and individual users.

We require thatUg
n(·) and Uu

n,m(·) are non-decreasing
functions defined on(0,∞). Different choices for the utility
functions and their arguments cover a wide range of fairness
principles proposed in the literature (e.g. [10], [16], [17], [23],
[25], [26], [27]).

The so-called(~w, α) proportional fairness principle [24]
among a set of individual users has been widely used in the
study of transmission control protocols, unicast scheduling

algorithms, etc. However, more general fairness principles
need to be developed for a multicast scheduler to characterize
fairness among both groups and users, which we do next.

For any sets of non-negative parameters{wn}n=1,··· ,N ,
{vn,m}m=1,··· ,Sn

n=1,··· ,N , α, and β, we define the group utility
functionsUg

n and user utility functionsUu
n,m as follows

Ug
n(y) ,

{

wn
y1−α

1−α
, α ≥ 0, α 6= 1

wn log(y) α = 1,
(3)

and

Uu
n,m(y) ,

{

vn,m
y1−β

1−β
, β ≥ 0, β 6= 1

vn,m log(y) β = 1.
(4)

We say that a scheduler that maximizes
∑

n

Ug
n

(

∑

m

Uu
n,m(τn,m)

)

(5)

achieves the(~w,~v, α, β) group proportional fairness criterion,
where ~w = {wn}n, ~v = {vn,m}n,m, and τn,m represents
userun,m’s throughput. We callα andβ the group anduser
fairness parameters, respectively. Whenα = 0 and wn = 1
for all n, the optimal scheduler solving (5) achieves(~v, β)
proportional fairness amongindividual users. Similarly, when
β = 0 and vn,m = 1 for all n and m, then the solution of
(5) achieves(~w, α) proportional fairness amonggroups. When
both α= β = 0, wn = 1, andvn,m = 1 for all n andm, (5)
reduces to the objective of the so called MAX scheduler, which
maximizes the aggregate throughput of all users in the system.
We show in Section V how these parameters can be adjusted
to control the fairness among groups and users.

F. Problem Statement:Given the descriptions of the channel,
content lifetime, and contact process dynamics, we are ready
to formulate our double opportunistic scheduling problem.

Double Opportunistic Problem (DOP):

max
S∈S

N
∑

n=1

Ug
n

(

Sn
∑

m=1

Uu
n,m(τSn,m)

)

(6)

s.t. τSn,m = lim
t→∞

1

t

t
∑

k=1

rgn(k)
∑

v∈[0,min{L,t−k}]

1ES
n,m,k,k+v

.

Note that the throughput expression in the constraint accounts
for the channel dynamics, content lifetime, and contact process
dynamics. The solution to this problem allows for the joint
exploitation of both thechannel conditionsand mobility to
obtain significant performance gains for content distribution.
In both scenarios, we allow the channel conditions to be
statistically heterogeneous across users.

We will first solve this problem under the assumption of
statistically homogeneous user mobility in Section III, and
then discuss its extension to the heterogeneous scenario in
Section IV.



III. D OUBLE OPPORTUNISTICMULTICAST SCHEDULING

UNDER HOMOGENEOUSPOISSONCONTACT PROCESSES

In this section, we develop a class of mobility-aware mul-
ticast scheduling algorithms that are provably optimal and
satisfy the GPF criterion for the case ofhomogeneousPoisson
contact processes, where the contact rates for all pairs of users
are all equal toλ.2 This allows us to introduce the optimal
algorithm that is extendable to the heterogeneous Poisson
contact processes scenario (cf. Section IV), but without the
cumbersome notation necessary to deal with the heterogeneity.

We start by characterizing the amount of data received by
the mobile users, either directly from the BS or indirectly
through mobile peers, as a function of the broadcast rate and
the contact process dynamics. To that end, we first define

κn(t, y) ,

Sn
∑

m=1

1{y≤rn,m(t)}, (7)

which gives the number of users in groupn receiving content
in slot t directly from the BS when it broadcasts to groupn
at ratey. The following lemma uses this information together
with the contact process characteristics to express the average
number of users that receive the contentdirectly or indirectly
within its lifetime.

Lemma 1. SettingN0 = κn(t, y), define two1×(Sn−N0+1)
vectors

−→
N 1 , [N0, N0 + 1, ...Sn],

−→
N 2 , [1, 0, . . . , 0], (8)

and an (Sn − N0 + 1) × (Sn − N0 + 1) generator matrix
A = {ai,j}, where

ai,j =











(N0 + i− 1)(Sn −N0 − i+ 1) if i = j,

−(N0 + i− 2)(Sn −N0 − i+ 2) if i = j + 1,

0 otherwise.
(9)

Then, given that at timet the BS broadcasts to groupn at rate
y, the expected number of users in groupn who will have a
copy of the content by the time it expires is given by

χn(t, y) ,
−→
N 1e

−λAL−→N T
2 . (10)

Proof: See Appendix C. �

Before we provide the optimal schedulerS∗, we need to
define a few auxiliary functions that facilitate its description.
We define theaggregate user utilityof groupn at time t as
the aggregate utility of all users belonging to that group, i.e.

Gn(t) ,

Sn
∑

m=1

Uu
n,m (Tn,m(t)) . (11)

2The derived scheduler does not require that the contact rateis the same
for all users in the system, only within a group. Replacing the system wide
contact rateλ with contact rateλn for groupn covers the latter case. We
chose not to do so to simplify exposition.

Also, for groupn, time slott and ratey, we define

ϕn(t, y) ,

Sn
∑

m=1

vn,m
y

(

max{Tn,m(t), ǫ}
)β

[

1{y≤rn,m(t)}

+
χn(t, y)− κn(t, y)

Sn − κn(t, y)
1{y>rn,m(t)}

]

, (12)

whereǫ → 0+ serves to prevent a division by zero. This is a
measure of the marginal increase in the aggregate user utility
Gn(t) when in slott the BS broadcasts to groupn at ratey.

(~w,~v, α, β) GPF scheduler S∗:

BS part:

The BS assigns a rate to each groupn = 1, · · · , N :

rgn(t) ∈ argmax
y∈{R1,··· ,RK}

ϕn(t, y). (13)

The BS chooses groupn(t) to broadcast at the

previously assigned raterg
n(t)(t)

n(t) ∈ argmax
1≤n≤N

wn

ϕn(t, r
g
n(t))

(

max{Gn(t), ǫ}
)α , (14)

where ties are broken uniformly at random.

User part:

Whenever any two users of the same group meet
each other, they share each other’s content such that
each will have the union of their sets of unexpired
copies after the contact.

The inclusion of the parameterǫ → 0+ in the formulation of
the GPF scheduler is to simplify mathematical notation. This
parameter can be omitted if we adopt the conventions that00 =
1 and 1/0 = ∞. In case there exist several groups attaining
infinite value in (14), the scheduler chooses the group that
maximizes the numerator of the expression in (14). In what
follows, we proceed by droppingǫ and adopting the above
cited conventions.

While optimality of the GPF scheduler is more rigorously
proven in the subsequent theorem, let us provide the intuition
behind its decision making. It assigns each groupn ratergn(t)
that maximizes the increase in the aggregate user utility ofthat
group, sinceϕn(t, y) is the marginal increase in the aggregate
user utility Gn(t) when in slott the BS broadcasts to group
n at ratey. Once the scheduler decides the optimal potential
rates for each group, it chooses the group that will result in
the largest increase in the objective function (6). Given the
group utility functions in (3), the expression in the RHS of
(14) is the marginal increase in the group utility of groupn
if the BS broadcasts to that group at the potential ratergn(t).
We now present the main result in this section:

Theorem 1. The above(~w,~v, α, β) GPF schedulerS∗ solves
the Double Opportunistic Problem (6) optimally under homo-
geneous Poisson contact processes.

Proof: See Appendix A. �



IV. D OUBLE OPPORTUNISTICMULTICAST SCHEDULING

UNDER HETEROGENEOUSPOISSONCONTACT PROCESSES

In the previous section, we assumed homogeneous Poisson
contact processes among the set of all users within each group.
In this section, we extend our results to include scenarios with
heterogeneous Poisson contact processes. We consider a model
where each group of users is divided into furthersubgroups
with different mobility characteristics, leading to heteroge-
neous contact behavior. Such a model is well-motivated by
real world examples, e.g., a network with both vehicular and
pedestrian users. In order to keep notation relatively simple,
we consider the case of two subgroups, but the results can be
readily extended to an arbitrary number of subgroups.

Let us assume that groupn hasS1
n users in subgroup1

andS2
n users in subgroup2 with S1

n + S2
n = Sn. Let users

within subgroup1 have contact rateλ1, users within subgroup
2 have contact rateλ2, and two users of different subgroups
have contact rateλ12. Similar to the homogeneous case, let us
define

κ1
n(t, y) ,

∑

{m:un,m∈Subgroup 1}

1{y≤rn,m(t)},

κ2
n(t, y) ,

∑

{m:un,m∈Subgroup 2}

1{y≤rn,m(t)}, (15)

whereκi
n(t, y) represents the number of users in subgroupi

(i = 1, 2) receiving contentdirectly from the BS if the BS
broadcasts to groupn at ratey. We are now ready to express
the average number of users in each subgroup that receive the
content eitherdirectly or indirectly, as in the homogeneous
scenario.

Before we describe the generator matrix in this scenario, we
need to map the two dimensional state space to one dimension.
To that end, leti : {0, 1, · · · , S1

n} × {0, 1, · · · , S2
n} 7→

{1, 2, · · · , (S1
n + 1)(S2

n + 1)} be an enumeration of all pos-
sible states(k1, k2). One example of such an enumeration
would be i(k1, k2) = k1(S

2
n + 1) + k2 + 1. Also, let

f1, f2 : {1, 2, · · · , (S1
n + 1)(S2

n + 1)} 7→ N be the inverse
mappings such thatfj(i(k1, k2)) = kj (j = 1, 2). Let
i0(t, y) = i(κ1

n(t, y), κ
2
n(t, y)) be the sequence number of the

initial state(κ1
n(t, y), κ

2
n(t, y)). Define

−→
N 1

1 , [f1(1), f1(2), · · · , f1((S
1
n + 1)(S2

n + 1))], (16)
−→
N 2

1 , [f2(1), f2(2), · · · , f2((S
1
n + 1)(S2

n + 1))], (17)

and
−→
N 2(t, y) , ~ei0(t,y) = [0, · · · , 0, 1, 0, · · · , 0], (18)

where~ei0(t,y) denotes thei0(t, y)th unit vector. Then, we can
construct the(S1

n+1)(S2
n+1) by (S1

n+1)(S2
n+1) generator

matrix A = {ai,j} as follows:
For k1 = 0, · · · , S1

n − 1 andk2 = 0, · · · , S2
n let

ai(k1,k2),i(k1+1,k2) = λ1k1(S
1
n − k1) + λ12k2(S

1
n − k1),

for k1 = 0, · · · , S1
n andk2 = 0, · · · , S2

n − 1 let

ai(k1,k2),i(k1,k2+1) = λ2k2(S
2
n − k2) + λ12k1(S

2
n − k2),

and for all other entries letai,j = 0, for i 6= j, and ai,i =

−
∑

j ai,j for all i.

Lemma 2. If at time t the BS broadcasts thenth content at
rate y, the average number of users in subgroups1 and2 that
will have a copy of the content at the end of its lifetime are

χ1
n(t, y) ,

−→
N 1

1e
AL−→N T

2 and χ2
n(t, y) ,

−→
N 2

1e
AL−→N T

2 , (19)

respectively.

Proof: See Appendix D. �

As for the auxiliary functions, we define the aggregate user
utility Gn(t) exactly as in (11). Its marginal increase when in
slot t the BS broadcasts to groupn at ratey is given by

ϕn(t, y) ,

Sn
∑

m=1

vn,m
y

(

Tn,m(t)
)β

[

1{y≤rn,m(t)}

+
χ1
n(t, y)− κ1

n(t, y)

S1
n − κ1

n(t, y)
1{y>rn,m(t)}1{un,m∈Subgroup1} (20)

+
χ2
n(t, y)− κ2

n(t, y)
(

S2
n − κ2

n(t, y)
1{y>rn,m(t)}1{un,m∈Subgroup2}

]

.

With all these definitions in place, the description of our
GPF schedulerS∗ for the heterogeneous contact processes
scenario remains unmodified except for the use of (20) instead
of (12). Also, the optimality of the algorithm continues to hold
with minor modifications as shown in the following theorem.

Theorem 2. The (~w,~v, α, β) GPF schedulerS∗ using (20)
for ϕn(t, y) solves the Double Opportunistic Problem (6)
optimally under the class of heterogeneous Poisson contact
processes described above.

Proof: See Appendix B. �

V. SIMULATION RESULTS

In this section, we present simulation results that: (i) val-
idate our theoretical results both under homogeneous and
heterogeneous contact processes; (ii) investigate the influence
of relaxing the Poisson contact process assumption to more
realistic contact processes; (iii) quantitatively compare three
main classes of scheduling strategies with varying degreesof
opportunistic features and with varying degrees of awareness
of user mobility; and (iv) examine the effect of group utility
function parameters on the fairness and throughput levels
achieved by the schedulers.

Our investigations in this section not only help to quantify
the performance improvement achieved by progressively more
mobility-cognizant schedulers over the baseline opportunistic
one, but also to indicate that the percentage gains achieved
by our optimal GPF scheduler (designed under Poisson con-
tact assumptions) are observed under more realistic mobility
patterns. Such insensitivity provides a strong promise forthe
effective use our GPF scheduler under real life conditions.

A. Basic Setup

We consider a square-shaped network areaΩ of size
(500 m)2 with a BS located at the center. We examine two



asymmetrically sized groups with70 and 30 users in order
to illustrate the effects of the group fairness parameterα on
the tradeoff between fairness and throughput. The channel
gains of individual users are composed of two independent
components: a slow fading gain determined by the users’
distance from the BS (with a power loss exponent of1.5),
and a fast fading gain drawn according to a unit mode
Rayleigh distribution independently and identically across
users and time slots. We have chosen the downlink rates
of the BS following the CDMA2000 1xEV-DO specification as
{38.4, 76.8, 153.6, 307.2, 614.4, 921.6, 1228.8, 1843.2, 2457.6}
kbps. We fix a content lifetime of180 seconds.

For the user and group utility functions, we setwn = 1
andvn,m = 1 for all n,m. Different wn (resp.vn,m) can be
interpreted as different prices that each group (resp. user) is
willing to pay for a given amount of data. Fixing the unit price
of data as such allows us to isolate and illustrate the effect
of the group fairness parameter on the fairness and system
throughput.

In order to make a fair assessment of the performance
gains associated with our GPF scheduler, we compare three
different opportunisticscheduling strategies, each achieving
fairness among groups and users, but with different degrees
of opportunistic capabilities:
◮ Single Opportunistic (SO) scheduler, where the BS only
takes advantage of varying channel conditions to schedule its
transmissions, but there is no peer-to-peer content propagation.
Thus, under the SO scheduler, mobility is exploited only
indirectly through its effect on channel conditions. This is the
current wireless cellular systems.
◮ Mobility-Agnostic Double Opportunistic (MA-DO)
scheduler, which corresponds to the special case of our GPF
scheduler withλ = 0. Accordingly, under the MA-DO
scheduler, not only does the BS exploit the channel variations
(as in SO) but also the users exploit mobility through peer-to-
peer content propagation. However, sinceλ = 0, the scheduler
has no knowledge of the contact processes (hence the name
mobility-agnostic), and does not incorporate the future effect
of mobility in its decision making.
◮ Double Opportunistic (DO) scheduler, which the same
as our GPF scheduler with knowledge of the actual contact
rateλ. We refer to the GPF scheduler with this new name to
differentiate it from the MA-DO scheduler and to highlight
the two degrees of opportunism it utilizes, both in channel
variations and in the contact process statistics.

B. Homogeneous Contact Processes

In this subsection, we illustrate and compare the perfor-
mance of the three opportunistic schedulers introduced above
under homogeneous contact processes (cf. Section III). We
also relax the Poisson contact process assumption to study
the impact of implementing the opportunistic schedulers under
more realistic mobility induced contact processes.

We examine two different contact processes. In the first
scenario, contact time between any pair of users is generated
according to an actual Poisson process as assumed in our

theoretical model. In the second and more realistic scenario,
we simulate the motion of users in the network, and declare
a contact when two users actually fall within their peer-
to-peer communication range (d = 10m). In this second
scenario, we model the user mobility by the Random Waypoint
(RWP) mobility model, which is one of the most widely
used mobility models in protocol design and performance
analysis/comparison in mobile ad-hoc networks [6]. As we
have noted earlier, the contact processes arising from the RWP
model have been shown to approximate homogeneous Poisson
processes [7], [11], which motivates us to adopt the RWP
model.

In the RWP model, each user chooses a random destination
within the network areaΩ, and moves towards its chosen
destination on a straight line at a given speedv > 0. The entire
procedure is repeated once the user arrives at its destination. In
order to implement our GPF scheduler proposed in Section III,
we need to obtain an estimate of the contact rateλ through
numeric simulation. For the RWP mobility model with speed
v = 1 m/s on the described network, we observe a contact rate
of λ ≈ 1.39 × 10−4. For a fair comparison, we choose this
contact rate when generating the Poisson contact processes.
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Fig. 1. Aggregate throughputs of the two groups of users (group 1: 70 users;
group 2: 30 users) under the three opportunistic schedulerswith homogeneous
Poisson contact processes.

Figure 1 depicts the aggregate throughput of the two groups
under the three scheduling schemes with simulated Poisson
contact processes. We display results for the three scheduling
scenarios (SO, MA-DO, and DO) for different group fairness
parametersα. The results clearly reveal significant percentage
gains (ranging from50% to 100%) achieved by the MA-DO
scheduler over the SO scheduler due its use of peer-to-peer
forwarding capability. Also, we see that the DO scheduler
provides another non-negligible level of improvement overthe
MA-DO scheduler due to its knowledge and effective use of
contact process characteristics. When compared to the baseline
SO scheduler, the full-fetched DO scheduler can observe a
percentage gain between75% and 150% in its aggregate
throughput performance!

Homogeneous mobility among users results in homoge-
neous channel conditions, and as a result throughput is fairly
equal across users. For this reason, we do not investigate fair-
ness among users, and set the user fairness parameterβ = 0.



For all three scheduling schemes, we observe that increasing
α has the effect of equalizing the aggregate throughput of
the two groups. The schedulers withα = 0, corresponding
to linear group utility functions, strive to maximize the sum
total throughput of the two groups, and serve to the larger
group exclusively. Adopting a larger group fairness parameter
α increases the throughput of the smaller group at the cost
of the total throughput. Another effect of increasingα is the
narrowing gap between the throughput curves of the different
scheduling schemes: schedulers must forego opportunitiesin
order to meet stricter fairness constraints.
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Fig. 2. Aggregate throughputs of the two groups of users (group 1: 70
users; group 2: 30 users) under the three opportunistic schedulers with RWP
mobility induced contact processes.

Figure 2 displays the aggregate throughput of the two
groups under the three scheduling schemes forRWP mobil-
ity induced contact processes. Not surprisingly, the baseline
SO scheduler achieves the same throughput as with Poisson
contact processes, since contact processes have no significance
in the single opportunistic scheduling scenario. The aggregate
throughput of both groups increases significantly once peer-
to-peer communication is enabled by the MA-DO scheduler.
Again, there is a further increase reaped by the DO scheduler
that also utilizes the contact process characteristics. While the
performance of the RWP mobility induced contact process
deviates slightly from the simulated Poisson contact processes,
the performance gains exhibit almost the same characteristics
in both scenarios. This is a reassuring result that promotesthe
use of GPF strategy in more realistic mobility models.

C. Heterogeneous contact processes

In this last subsection, we assess the performance of the
three opportunistic schedulers (the SO, MA-DO, and DO
schedulers) under heterogeneous Poisson contact processes.
We recall that the DO scheduler implements the GPF scheduler
proposed in Section IV. As in the previous subsection, we
consider two groups with70 and 30 users, respectively, but
also assume that both groups are further divided into two
subgroups of fast and slow users (comprising10% and90% of
the total number of users, respectively). We simulate Poisson
contact processes of three different rates between two fast
users (λ1 = 10−3), two slow users (λ2 = 10−5), and a fast
and a slow user (λ12 = 10−4).
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Fig. 3. Aggregate throughputs of the two groups of users (group 1: 70 users;
group 2: 30 users) under the three opportunistic schedulerswith heterogeneous
Poisson contact processes.

Figure 3 displays the aggregate throughput of the two
groups under the three scheduling schemes for heterogeneous
Poisson contact processes. The baseline SO scheduler perfor-
mance shows the same throughput as with Poisson contact
processes, since contact processes have no significance in the
single opportunistic scheduling scenario. The MA-DO and DO
schedulers, again, provide significant performance improve-
ments by effectively utilizing the peer-to-peer dissemination
and contact process knowledge, respectively. These results
validate both the fairness and efficiency aspects of our GPF
design under the heterogenous contact processes.

Overall, the numerical investigations under both the ho-
mogenous and the heterogeneous mobility scenarios show
significant and consistent gains that the class of GPF sched-
ulers achieves through its opportunistic use of peer-to-peer
data dissemination capabilities and its knowledge of contact
statistics among users.

VI. CONCLUSION

In this paper we studied the propagation of deadline-based
content in wireless network characterized byheterogeneous
(time-varying and user-dependent) wirelesschannel condi-
tions, heterogeneous user mobility, and where communication
could occur in ahybrid format (e.g., directly from the central
controller or by exchange with other mobiles in a peer-
to-peer manner). For this 3H wireless system, we showed
that by exploiting double opportunities of channel condition
and mobility afforded us substantial performance gains. We
introduced a set of Group Proportional Fairness (GPF) criteria
to characterize different considerations of fairness and perfor-
mance tradeoffs. We developed a class of double opportunistic
multicast schedulers and proved their optimality in terms
of both utility and fairness. Simulation results confirmed
that the proposed algorithms significantly improved system
performance in terms of both throughput and fairness. Our
work provides the key first steps and guideline on how to
appropriatelyexploit multiple opportunities in the design for
content sharing in future wireless systems.
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APPENDIX A
PROOF OFTHEOREM 1

Recall that the scheduler depends on~r(t) to make its
decision. Next, we study the performance of the scheduler
for each fixed maximum achievable rate vector~r to show its
optimality. For each such~r, we letfS,~r

n,Ri
denote the frequency

that a schedulerS chooses to broadcast to groupn at rate
Ri when the maximum achievable data rate vector is~r. The
existence of this frequency is guaranteed by our definition
of the feasible scheduler setS. To simplify notation in what
follows, let us define
R~r(i, n,m) ,

Ri

[

1{rn,m≥Ri} +
χn(t, Ri)− κn(t, Ri)

Sn − κn(t, Ri)
1{rn,m<Ri}

]

, (21)

which gives the expected contribution to the throughput of
userun,m when the scheduler broadcasts to groupn at rate
Ri given ~r(t) = ~r (cf. (7) and (10) for the definitions of
κn(·, ·) andχn(·, ·)).

Then, the throughput userun,m would get under scheduler
S when the maximum achievable data rate vector were fixed
to be~r can be written as

τS,~rn,m =

K
∑

i=1

fS,~r
n,Ri

R~r(i, n,m). (22)

Consequently, userun,m’s total throughput under schedulerS
can be expressed as

τSn,m =
∑

all ~r

π(~r)τS,~rn,m, (23)

where π(~r) is the probability of observing the maximum
achievable rate vector~r, and the summation is carried out over
the finite set of all possible maximum achievable rate vectors.
Note that by the stationarity and periodicity of the maximum
achievable data rate vector (Assumption 1),π(~r) corresponds
to the fraction of time that~r is in effect.

In the following, we compare our optimal schedulerS∗

and any arbitrary feasible schedulerS ∈ S. Let τS
∗

n,m and
τSn,m denote the long-term throughputs userun,m would get
under schedulersS∗ andS, respectively. Also, letγS∗

n andγS
n

denote the long-term aggregate user utilities of groupn under
schedulersS∗ andS, respectively.



Given the concave and non-decreasing group and user utility
functions defined in (3) and (4), the objective function in
(6) is a concave function of the user throughput for any set
of non-negative parameters{wn}n=1,··· ,N , {vn,m}m=1,··· ,Sn

n=1,··· ,N ,
α and β. Thus, in order to prove the optimality ofS∗, it
suffices to show that the global optimality criterion for convex
optimization ([5]) is satisfied, i.e.,

N
∑

n=1

Sn
∑

m=1

wn
(

γS∗
n

)α ·
vn,m

(τ∗n,m)β
· (τSn,m − τS

∗

n,m) ≤ 0. (24)

Note that (24) is a legal expression if we adopt the convention
that 00 = 1. If there exists somen such thatγ=

n 0, or some
n,m such thatτS

∗

n,m = 0, then we must haveα = 0 or β = 0,
respectively.

In light of (23), it suffices to show that for any given
maximum achievable data rate vector~r

N
∑

n=1

Sn
∑

m=1

wn
(

γS∗

n

)α ·
vn,m

(τS∗

n,m)β
· (τS,~rn,m − τS

∗,~r
n,m ) ≤ 0. (25)

To show that (25) holds for any schedulerS, we first define
fS∗,S,~r
n,n′,Ri,Rj

as the joint frequency that given the maximum
achievable rate vector~r, schedulerS∗ chooses to broadcast to
groupn at rateRi and schedulerS chooses to broadcast to
groupn′ at rateRj . Therefore, we have

τS
∗,~r

n,m =

N
∑

n′=1

K
∑

i,j=1

fS∗,S,~r
n,n′,Ri,Rj

R~r(i, n,m), (26)

τS,~rn′,m′ =

N
∑

n=1

K
∑

i,j=1

fS∗,S,~r
n,n′,Ri,Rj

R~r(j, n′,m′). (27)

Then, using (19), (11), (13) and (14), we have

Sn′
∑

m′=1

wn′vn′,m′fS∗,S
n,n′,Ri,Rj ,~r

R~r(j, n′,m′)
(

γS∗

n′

)α
(τS

∗

n′,m′)β

≤

Sn
∑

m=1

wnvn,mfS∗,S
n,n′,Ri,Rj ,~r

R~r(i, n,m)
(

γS∗

n

)α
(τS∗

n,m)β
. (28)

From (26), (27) and (28), we have

N
∑

n′=1

Sn′

∑

m′=1

wn′vn′,m′τS,~rn′,m′

(

γS∗

n′

)α
(τS

∗

n′,m′)β

=
N
∑

n′=1

Sn′

∑

m′=1

N
∑

n=1

K
∑

i,j=1

wn′vn′,m′fS∗,S,~r
n,n′,Ri,Rj

R~r(j, n′,m′)
(

γS∗

n′

)α
(τS

∗

n′,m′)β

(29)

≤

N
∑

n=1

Sn
∑

m=1

N
∑

n′=1

K
∑

i,j=1

wnvn,mfS∗,S,~r
n,n′,Ri,Rj

R~r(i, n,m)
(

γS∗

n

)α
(τS∗

n,m)β
(30)

=

N
∑

n=1

Sn
∑

m=1

wnvn,mτS
∗,~r

n,m
(

γS∗

n

)α
(τS∗

n,m)β
, (31)

where (29) and (31) follow from (27) and (26), respectively,

and (30) follows from (28). This completes the proof of (25),
which immediately yields the desired optimality criterion(24).

APPENDIX B
PROOF OFTHEOREM 2

The proof follows from the same line of argument as in the
proof of Theorem 1 (cf. Appendix A), once we redefine

R~r(i, n,m) ,

Sn
∑

m=1

vn,m
y

(

Tn,m(t)
)β

[

1{y≤rn,m(t)}

+
χ1
n(t, y)− κ1

n(t, y)

S1
n − κ1

n(t, y)
1{y>rn,m(t)}1{un,m∈Subgroup1}

+
χ2
n(t, y)− κ2

n(t, y)
(

S2
n − κ2

n(t, y)
1{y>rn,m(t)}1{un,m∈Subgroup2}

]

.

APPENDIX C
PROOF OFLEMMA 1

Let {X(s)}s≥0 denote the number of users in groupn who
have a copy of the content at times. Here, we measure the
time s starting from the initial broadcast of the content. Note
that{X(s)}s≥0 is a continuous-time Markov chain with initial
stateX(0) = N0, whereN0 , κn(t, y) is the number of
users who receive the content directly from the BS at the time
of the broadcast. Furthermore, the only non-zero transition
probabilities areP{X(s+ δs) = i+1 | X(s) = i} = λi(Sn−
i)δs + o(δs) and P{X(s + δs) = i | X(s) = i} = 1 −
λi(Sn − i)δs − o(δs) for all i ∈ {N0, · · · , Sn − 1}. Let us
definepi(s) , P{X(s) = i | X(0) = N0}, i.e., the probability
that at times there arei users with content when initiallyN0

users received the content from the BS. Then, we can write
the forward Kolmogorov equations as

ṗN0
(s) = −λN0(Sn −N0)pN0

(s),

. . .

ṗi(s) = λ(i − 1)(Sn − i+ 1)pi−1(s)− λi(Sn − i)pi(s),

. . .

ṗSn
(s) = λ(Sn − 1)pSn−1(s), (32)

Letting ~P (s) = [pN0
(s), pN0+1(s), · · · , pSn(t)]

T , the set of

equations in (32) can be rewritten asd~P(s)
ds

= −λA~P (s) where
A is the infinitesimal generator defined in (9). Thus we have
~P (s) = e−λAs−→N T

2 , where
−→
N 2 is defined in (8). Finally, the

average number of users with content at the end of the content
lifetime L can be expressed asE[X(L)] =

∑Sn

i=N0
i · pi(L) =

−→
N 1e

−λAL
−→
N T

2 , where
−→
N 2 is defined in (8).

APPENDIX D
PROOF OFLEMMA 2

The proof follows from the same line of argument
as in the proof of Lemma 1 (cf. Appendix C), when
we consider the continuous-time Markov chain with state
{(X1(s), X2(s))}s≥0, where X1(s) and X2(s) denote the
number of users in subgroups1 and2, respectively, who have
a copy of the content at times.


